Standardized Structured Reporting and Future Perspectives (*in pathology*)

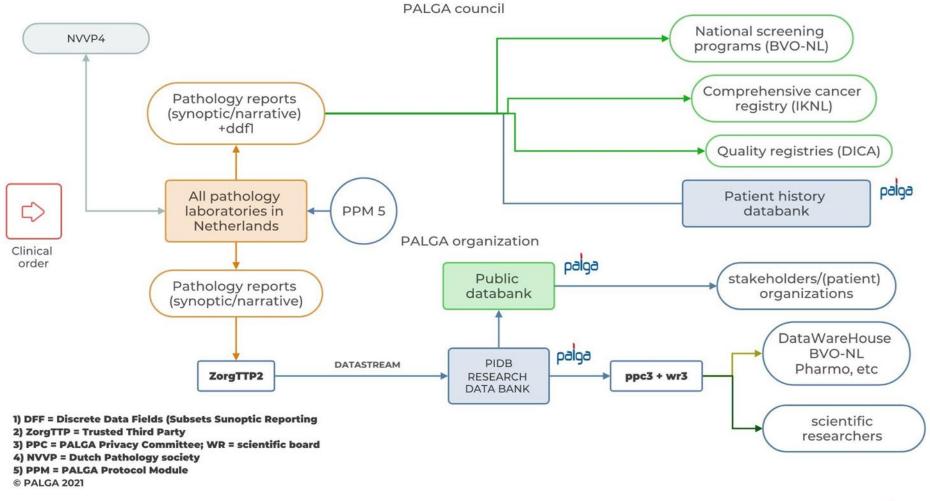
Paul Seegers

Sr. Advisor & Administrator, National Pathology - & Molecular Protocols

Palga Foundation, Netherlands

Future of Cancer Data: Harnessing the Potential of Pathology Data, October 18th,2024, Las Vegas

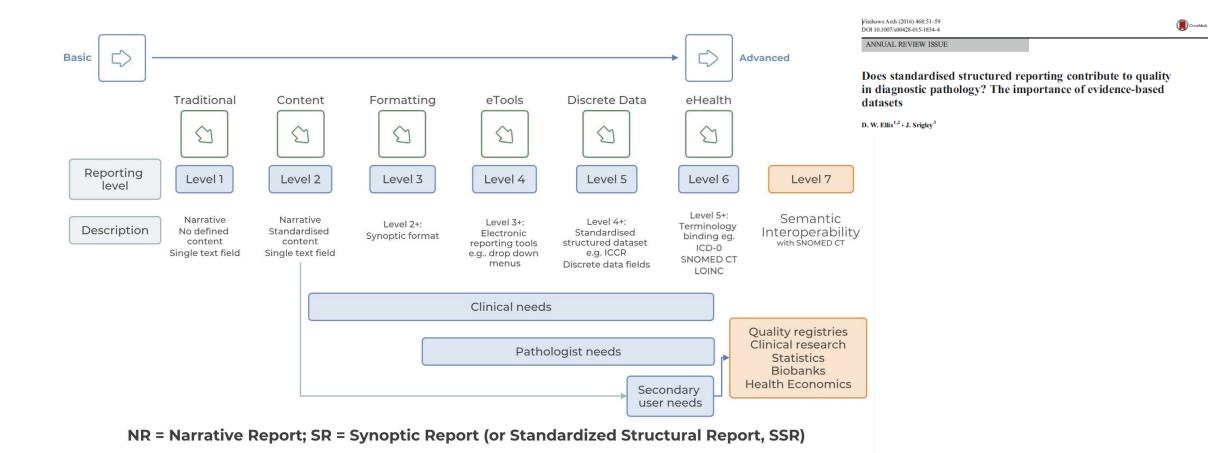
I have no conflict of interest to disclose


Outline

- A short introduction to Palga
- Standardized Structured Reporting (SSR) & benefits
- The layers of interoperability
- Timeline implementation & development of SSR (Palga)
- Future perspectives
 - Artificial intelligence
 - MOT/MTB with molecular diagnostics & patient outcome
 - Personal Health Environment (PHE)
 - European Health Data Space (EHDS)
- Take home messages

A short introduction to Palga National Pathology Databank

"Pathology report" the next level

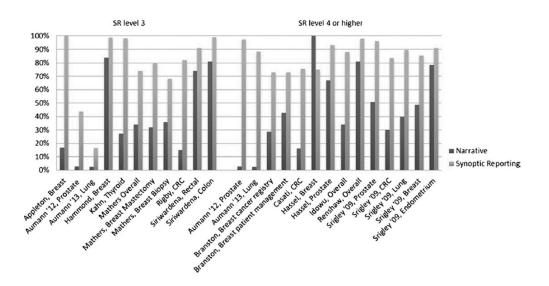

Definition of "Standardized Structured Reporting" or "Synoptic Reporting"

"Standardized Structured Reporting (SSR), also known as Synoptic Reporting (SR), is a clinical documentation method in which a standardized reporting structure helps produce more complete, consistent, accurate, and valuable medical reports.

Standardized Structured Reporting standardizes how data is collected, transmitted, stored, retrieved, and shared between clinical information systems, for primary and secondary use."

Levels of pathology reporting Standardized Structured Reporting (SSR) & benefits

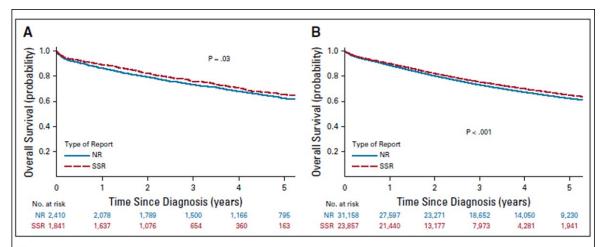
💓 palga


Levels 3-4+ of pathology reporting Standardized Structured Reporting (SSR) & benefits

Virchows Arch (2016) 468:639-649 DOI 10.1007/s00428-016-1935-8

REVIEW AND PERSPECTIVES

The effects of implementing synoptic pathology reporting in cancer diagnosis: a systematic review


Caro E. Sluijter^{1,2} · Luc R. C. W. van Lonkhuijzen³ · Henk-Jan van Slooten^{2,4} · Iris D. Nagtegaal^{1,2} · Lucy I. H. Overbeek²

> JCO Clin Cancer Inform. 2019 May;3:1-12. doi: 10.1200/CCI.18.00104.

Improvement of Care in Patients With Colorectal Cancer: Influence of the Introduction of Standardized Structured Reporting for Pathology

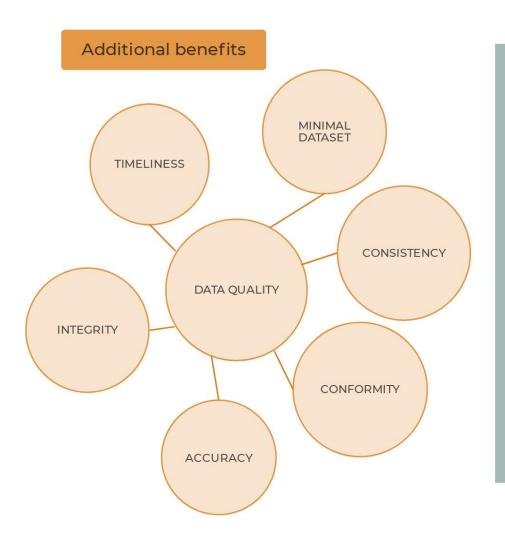
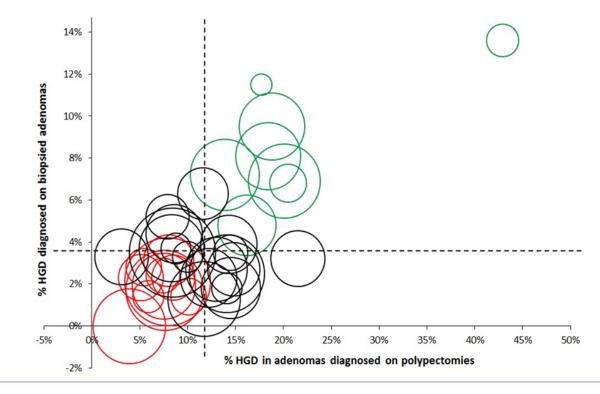

Caro E Sluijter ¹², Frans van Workum ¹, Theo Wiggers ³, Carlijn van de Water ¹, Otto Visser ⁴, Henk-Jan van Slooten ²⁵, Lucy I H Overbeek ², Iris D Nagtegaal ¹²

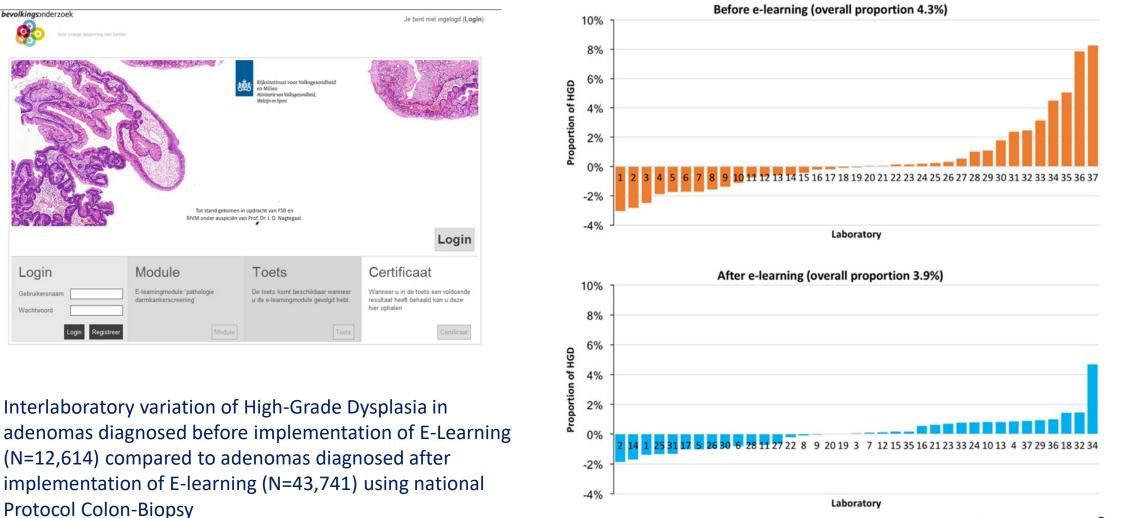
FIG 4. (A) Overall survival of Dutch patients with colorectal cancer (CRC) with high-risk stage II disease. There is a small but consistent overall survival benefit in the patients whose tumors were reported with standardized structured reporting (SSR). *P* = .026. (B) All stages CRC according to the type of pathology report. There is a small but consistent overall survival benefit in the patients whose tumors were reported with SSR. *P* < .001. NR, narrative report.

Level 5-6 of pathology reporting Standardized Structured Reporting (SSR) & benefits

Full report Conform (inter-)national guidelines, ICCR; WHO classifications, pTNM/FIGO/ENETS **Benchmarking (Auditing) Quality control E-learning support Trial-alerts** Lowering administration burden Ordering Import (AI, NGS, WGS) 2 Electronic Health records (MOT) 3 International registries International research **European Health Data Space (EHDS)**



Benchmarking (Auditing) *Standardized Structured Reporting (SSR) & benefits*


Histopathology 2016 DOI: 10.1111/his.12923

Interlaboratory variability in the grading of dysplasia in a nationwide cohort of colorectal adenomas

Chantal C H J Kuijpers,^{1,2,3} Caro E Sluijter,^{2,4} Jan H von der Thüsen,^{5,6} Katrien Grünberg,^{6,7} Martijn G H van Oijen,^{2,8} Paul J van Diest,¹ Mehdi Jiwa,^{1,3} Iris D Nagtegaal,^{2,4} Lucy I H Overbeek² & Stefan M Willems^{1,2}

Benchmarking (Auditing) Standardized Structured Reporting (SSR) & benefits

Lowering administration burden / better quality data/completeness

Standardized Structured Reporting (SSR) & benefits

> Gastrointest Endosc. 2020 Jul;92(1):154-162.e1. doi: 10.1016/j.gie.2020.01.052. Epub 2020 Feb 11.

Dutch Gastrointestinal Endoscopy Audit: automated extraction of colonoscopy data for quality assessment and improvement

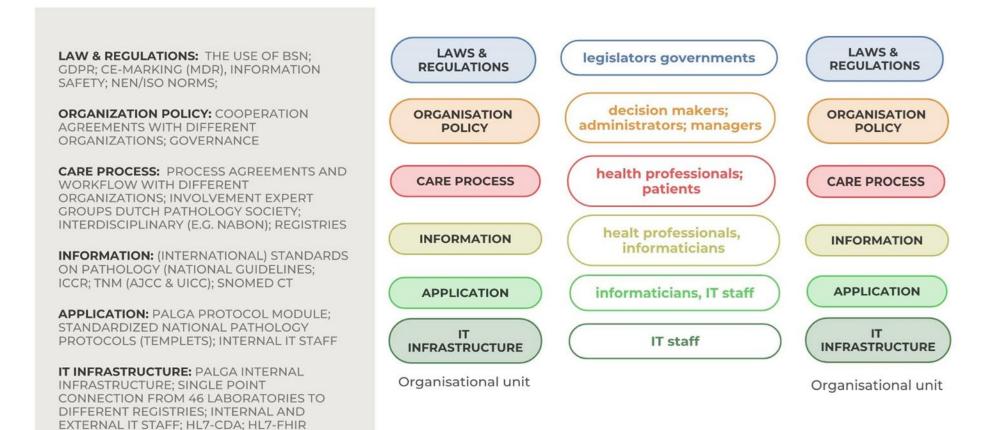
Michael P M de Neree Tot Babberich ¹, Michiel Ledeboer ², Monique E van Leerdam ³, Manon C W Spaander ⁴, Aura A J van Esch ⁵, Rob J Ouwendijk ⁶, Peter J van der Schaar ⁷, Sander van der Beek ⁸, Miangela M Lacle ⁹, Paul A Seegers ¹⁰, Michel W J M Wouters ¹¹, Paul Fockens ¹, Evelien Dekker ¹

Results

Between January 1, 2016 and March 31, 2019, 48 hospitals or endoscopy centers voluntarily participated in the DGEA, and 275,017 unique patients with 313,511 colonoscopies were registered. Overall missing values were limited to <1%.

Conclusions

The results of this study demonstrate that it is feasible to deploy a quality registry collecting uniform data without additional administration burden for healthcare professionals.


Saving costs are approximately €18 million per year

- National Cancer Registry (NCR)
- Population Screening Registry
 - Cervical Cancer
 - Breast Cancer
 - Bowel Cancer
- Dutch Institute for Clinical Auditing (DICA)
 - Colon Biopsy (DGEA)
 - Colon Resection (DRCA)
 - Esophagus gastric (DUCA)
 - Lung (DSCA-L/R)
 - Pancreas (DPA)
 - Melanoma (DMTR)
 - Head-Neck Biopsy (DHNA)
 - Prostate (DPA)
 - Cervix (DGOA-cer)

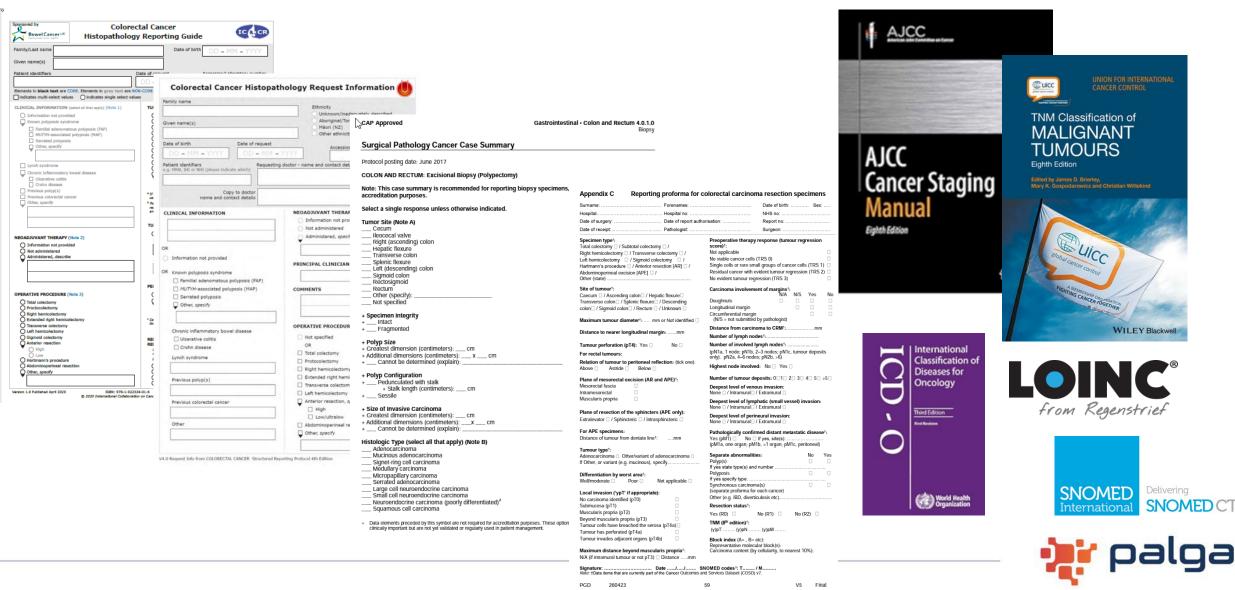
Per year > 250,000 pathology data sets

The layers of Interoperability, level 7

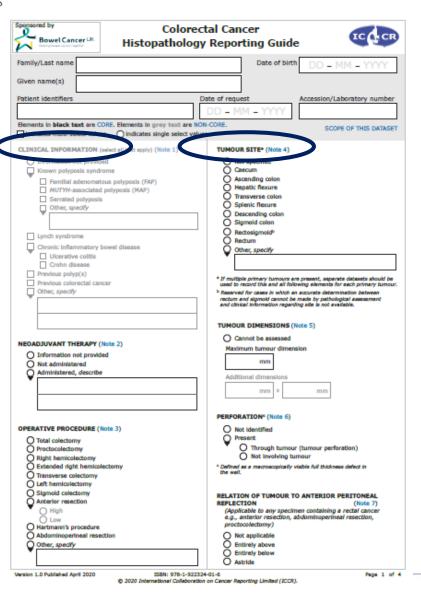
Law & regulations level (EU) The layers of interoperability

Madian Davia	Rule 11 states:
Medical Device MDCG 2019-11	Software intended to provide information which is used to take decisions with diagnosis or therapeutic purposes is classified as class IIa, except if such decisions have an impact that may cause:
	death or an irreversible deterioration of a person's state of health, in which case it is in class III; or
MDCG 2019-11	a serious deterioration of a person's state of health or a surgical intervention, in which case it is classified as class IIb.
Guidance on Qualification and Classification of Software in Regulation (EU) 2017/745 – MDR and Regulation (EU) 2017/746 – IVDR October 2019	Software intended to monitor physiological processes is classified as class IIa, except if it is intended for monitoring of vital physiological parameters, where the nature of variations of those parameters is such that it could result in immediate danger to the patient, in which case it is classified as class IIb.
	All other software is classified as class I.
	The text of Rule 11 can be divided into what are essentially three sub-rules that are applied depending on the intended use/purpose of the MDSW:
Medical device: "medical device" means any instrument, apparatus, appliance, software, implant, reagent, material or	11a: (3 first paragraphs of Rule 11) intended to provide information which is used to take decisions with diagnostic or therapeutic purposes;
other article intended by the manufacturer to be used, alone or in combination, for human beings for	11b: (Paragraph 4 of Rule 11) intended to monitor physiological processes or parameters;
one or more of the following specific medical purposes: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of disease,	11c: (Paragraph 5 of Rule 11) all other uses.
	Sub-rule 11a):
	The wording "intended to provide information which is used to take decisions with diagnosis or therapeutic purposes" describes, in very general terms, the "mode of action" which is characteristic of all MDSW. Therefore, this sub-rule is generally applicable to all MDSW (excluding those MDSW that have no medical purpose).
	Sub-rule 11a), states that MDSW (which is intended to provide information which is used to take decisions with diagnosis or therapeutic purposes) is classified as class IIa.

🐙 palga


Care process level (Palga, Netherlands) The layers of interoperability

Rolls in generic maintenance and development process, national protocols Palga Holder (Palga Foundation) Financier (Ministry of Health and Welfare) Functional Administrator User (pathologist) Expertise groups (NVVP) Autorisator (EG's) **Technical Administrator** Protocol Engineer / Distributeur Terminologist 4. Realisation 5. Publication 1. Intake 2. Analyse 4. Decision 4° Ŷ Ŷ Ŷ



Information level, (inter)national standards

The layers of interoperability

Information level, international standard (ICCR example) Level 3+ The layers of interoperability

CORE elements

Core elements are essential for the cancer's clinical management, staging, or prognosis. These elements will have evidentiary support at Level III-2 or above (based on prognostic factors in the National Health and Medical Research Council (NHMRC)). In rare circumstances, where level III-2 evidence is not available, an element may be made a core element where there is unanimous agreement in the Dataset Authoring Committee (DAC).

Non-CORE elements

Non-core elements are unanimously agreed to be included in the dataset but are not supported by level III-2 evidence. These elements may be clinically important and recommended as good practice but are not validated or regularly used in patient management.

Information level, international standard SNOMED-CT Level 7 The layers of interoperability

- The purpose of this SNOMED CT Implementation Guide for Cancer Synoptic Reporting is to provide a structured and comprehensive roadmap for the implementation of SNOMED CT in this field.
- The guide covers topics important for the implementation of clinical information systems facilitating high-quality, consistent and meaningful use of SNOMED CT in cancer synoptic reporting.
- By adopting SNOMED CT, healthcare organizations can improve patient care, facilitate research, and promote collaboration between healthcare providers.
- Targeted at both clinical users and technical implementers, this Implementation Guide will provide the necessary resources and guidance to ensure a successful SNOMED CT implementation in the field of cancer synoptic reporting

SNOMED CT Implementation Guide for Cancer Synoptic Reporting

Publication date: 2024-09-27 Web version link: http://snomed.org/cansig SNOMED CT document library: http://snomed.org/doc

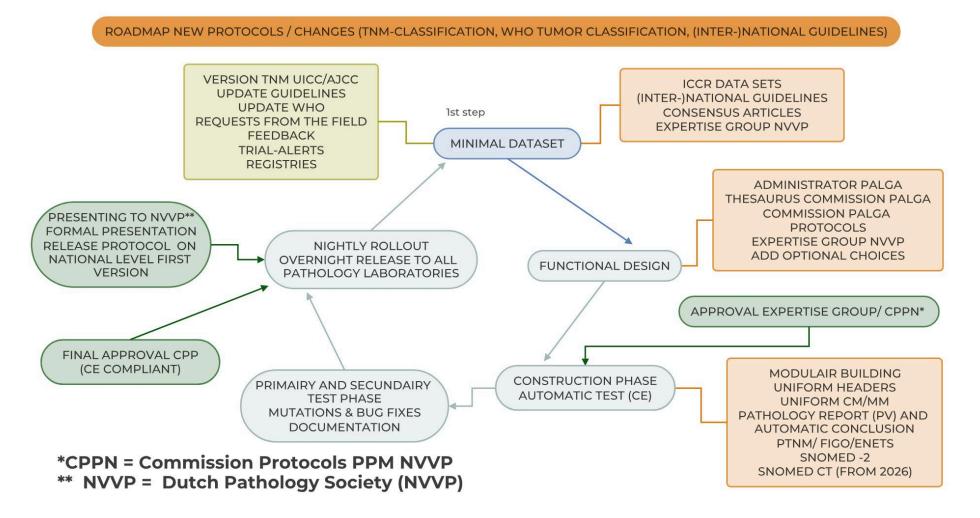
This PDF document was generated from the web version on the publication date shown above. Any changes made to the web pages since that date will not appear in the PDF. See the web version of this document for recent updates.

An Initiative for Collaboration Between SNOMED International & ICCR

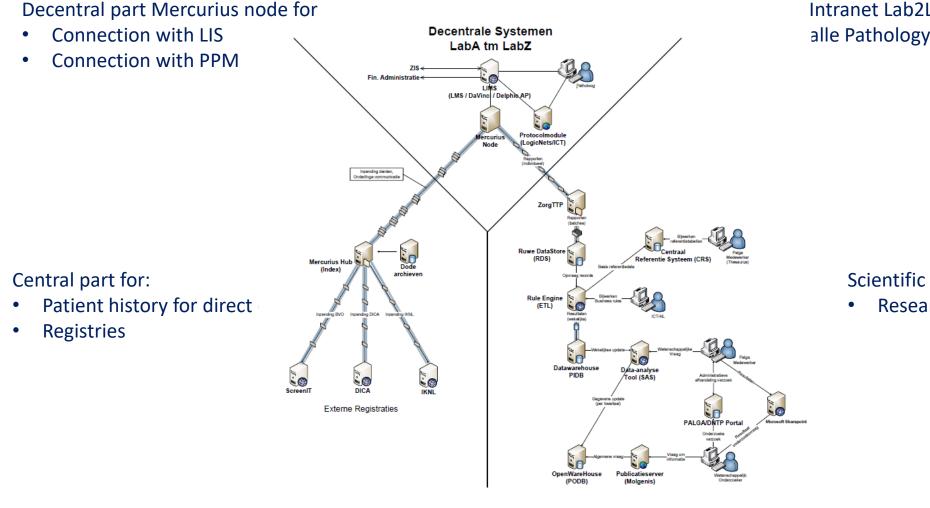
Why this initiative?

- Mutual benefit for the use of SNOMED CT bindings in International datasets for pathology
 - To use as training sets for SNOMED International
 - To use when implementing Synoptic Reporting in a national pathology community as a reference
 - It will promote interoperability, national and international

					v v,	
Core and	OPERATIVE	o Total colectomy o Proctocolectomy				
Non-core	PROCEDURE	o Right hemicolectomy o Extended right hemicolectomy	Question SCT	Answer item	Answer SCT	
		o Transverse colectomy o Left hemicolectomy o Sigmoid colectomy	2620001000004108 Specimen collection procedure (observable entity)	Total colectomy	26390003 Total colectomy (procedure)	
		o Anterior resection o High o Law	2620001000004108 Specimen collection procedure (observable entity)	Proctocolectomy	174059005 [Excision of colon and rectum (procedure)]	
		 Hartmann's procedure Abdominoperineal resection Other, specify 	2620001000004108 Specimen collection procedure (observable entity)	Right hemicolectomy	359571009 Right colectomy (procedure)	
			2620001000004108 Specimen collection procedure (observable entity)	Extended right hemicolectomy	174071004 Extended right hemicolectomy (procedure)	
			2620001000004108 Specimen collection procedure (observable entity)	Transverse colectomy	26925005 Transverse colectomy (procedure)	
			2620001000004108 Specimen collection procedure (observable entity)	Left hemicolectomy	82619000 Left colectomy (procedure)	
			2620001000004108 Specimen collection procedure (observable entity)	Sigmoid colectomy	84604002 Sigmoid colectomy (procedure)	
			2620001000004108 Specimen collection procedure (observable entity)	Anterior resection	4558008 Anterior resection of rectum (procedure)	
			2620001000004108 Specimen collection	High	400988008 High anterior resection of	


ISBN: 978 1 922324 01 6 – published April 2020

© 2020 International Collaboration on Cancer Reporting Limited (ICCR).


Page 2 of 37

Application level (procedure Palga, Netherlands) The layers of interoperability

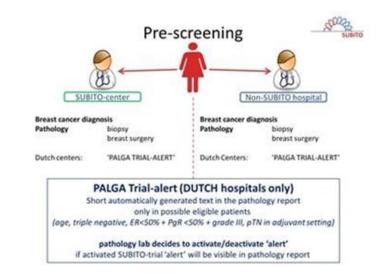
IT infrastructure level (Palga, Netherlands) The layers of interoperability

Intranet Lab2Lab connection between alle Pathology Laboratories

Scientific national part for:

Research

Level 6 of pathology reporting (Palga, Netherlands) The layers of interoperability


palga	Opslaan Annuleren Versture Feedback Controle		Patient Naam TestTestTest			Patient Nummer: 1234567890 Publicatie datum: 20-09-2023 Protocol versie 10.2019.12 Geboorte Datum: 24-07-1989 ColonRectumcarcinoon
Macro Tumor1 Tumor2 Lymf Overig	Respons op eerdere (neo- adjuvante) therapie Type (1ste) tumor (WHO)	geen regressie partiel adenocarcinoom mucineus adenocarcinoom zegelringcelcarcinoom adenosquameus carcinoom medullair carcinoom ongedifferentieerd carcinoom	Microsco e regressie micropapillair adenocarcinoom serrated adenocarcinoom adenoma-like adenocarcinoom NET/NEC mixed neuroendocrien carcinoo (MiNEN) Goblet cell adenocarcinoom		•	PV Conclusie Hemicolectomie rechts, 2 tumoren. Type 1ste tumor (WHO): goed/matig gedifferentieerd (laaggradig) adenocarcinoom; maximale diameter tumor 0,3 cm; lokalisatie: coecum; diepste tumor doorgroei: submucosa; eerdere neo-adjuvante therapie: chemotherapie, respons op eerdere neo-adjuvante therapie: partiele regressie (pT1). Dichtstbijzijnde darmsnijvlak vrij (afstand =< 0,1 cm); retroperitoneaal klievingsvlak/radiaire snijvlak vrij (afstand 0,2 cm). Angio-invasie: geen lymfvat invasie of extramurale veneuze invasie aangetroffen. Perineurale invasie: niet aangetroffen. Type 2e tumor (WHO): micropapillair adenocarcinoom; maximale diameter tumor 0,6 cm; lokalisatie: appendix; diepste tumor doorgroei (appendix): invasie in submucosa (pT1). Dichtstbijzijnde darmsnijvlak niet vrij; retroperitoneaal klievingsvlak/radiaire snijvlak niet vrij. Angio-invasie: lymfvat invasie. Perineurale invasie: niet aangetroffen.
MMR/MSI	Differentiatiegraad Diepste tumordoorgroei	goed/matig gedifferentieerd (laaggradig) intramucosaal / lamina propr	 slecht/ongedifferentieerd (hooggradig) pericolisch (vet)weefsel 	⊖ niet te beoordelen	0	Aantal lymfklieren: 5 waarvan met metastasen: 3. Aantal tumordeposits: 1. TNM classificatie Colon en Rectum (8e editie UICC): ypT1N1a(mi). TNM classificatie Appendix (8e editie UICC): ypT1N1b.
Moleculair	Angio-invasie	submucosa muscularis propria	peritoneum o andere organen t o intramurale	extramurale	0	Diagnoseregel(s) colon*rechts*resectie*systeem*adenocarcinoom*therapie effect*snijvlak vrij colon*rechts*appendix*resectie*systeem*micropapillair carcinoom lymfklier*mesocolon*resectie*systeem*metastase adenocarcinoom*colon
Aanvulling Protocol			hoog (Bd3) (10 of >10)	veneuze invasie	0	
 Protocol updates 	Perineurale groei			eoordeelbaar		
	Lymfocytaire infiltratie Dichtstbijzijnde darmsnijvlak		te beoordelen 🔿 exact			
	Lokalisatie dichtsbijzijnde darmsnijvlak	🔿 proximaal 🔿 distaal			-	

Level 6 of pathology reporting, trial alerts (Palga, Netherlands) The layers of interoperability

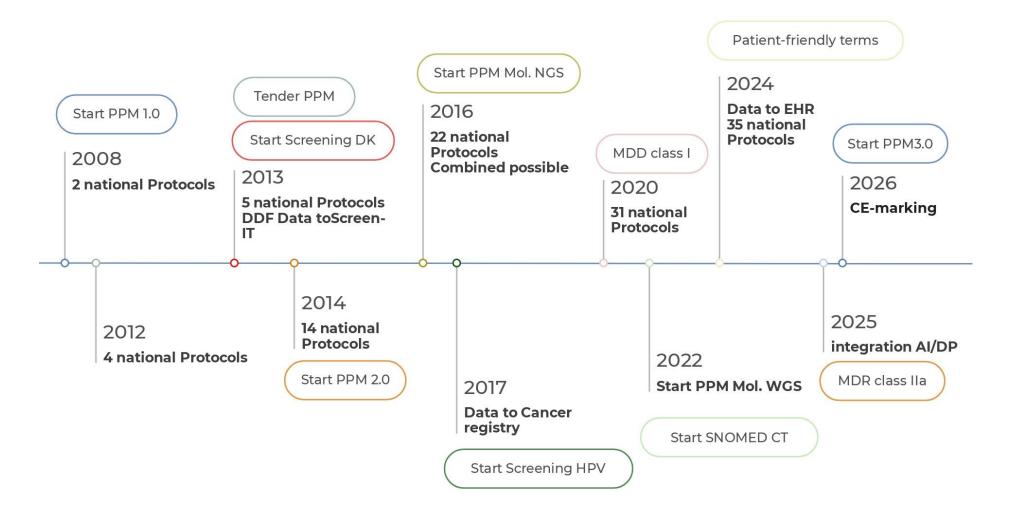
protocol versie 2.0.44 Mammacarcinoom

palga	Opslaan Annuleren Vers Feedback Cor	tote Rapport Nummer Patient Naam trote T17-12345 Rick			Patient Nummer: Patient Gestacht: M Geboorte Datum: 12/10/1		protocol versie 2/ Mammacarcinoc
					PV	Conclusie	
Macro	Zijdigheid MARI-klier procedure (MKP)	Inks O rechts O niet vermeld ia O nee		^	Gebaseerd op de rich Klinische gegevens Preparaat: lumpectom	en macroscopi	
 Tumor 1 	OKD				Zijdigheid: links Eerdere niet complete Lokalisatie tumor: met	diale bovenkwadrar	nt
Receptor 1	Partiele okselklierdissectie	⊖ ja ⊖ nee			Eerdere therapie: gee Tumor aanwezig Dominante tumor: invo		nder CIS
ОКО	Gewicht okselklierdissectie (gr) SWK verricht				Type invasieve tumor ductaal carcinoom nor Afmeting dominante tu	(WHO): Invasief ca i) imor: 5,3 cm	rcinoom NST (voorheen infiltrerend
Overige	SWK Vernont	nee ja, negatief ja, metastasen aangetroffen ja, geisoleerde tumorcellen aangetroffen ja, geisoleerde tumorcellen ja, voorafgaand therapie	ieren aangetroffen de aan de neo-adjuvantie		Tubulaire differentiatie Mitosen per 2mm2: 2 Kernpolymorfie: 1 Graad volgens Bloom Kenmerken van T4 m	Richardson: I ammacarcinoom: g	een
Aanvulling	Lymfklieren OKD				Snijvlakken 1e inva Snijvlak: meer dan foo		
	Aantal lymfklieren OKD	5			Receptoren 1e inva Oestrogeen receptor:	negatief	
	Eerdere therapie	geen radiotherapie thermoablatie chemotherapie hormonale therapie onbekend			Percentage Oestroger Progesteron receptor: Percentage Progester HER2 Immunohistoch HER2 FISH: niet verni	negatief on receptor positie emie: negatief (sco	ve tumorcellen: 5%
	Aantal lymfklieren OKD met macrometastase > 2,0 mm	4			HER2 CISH / SISH: n HER2 PCR: niet verric Status HER2: negatie	et verricht ht	
	Diameter grootste macrometastase OKD (mm) Extranodale groei OKD				Okselklierdissectie Zijdigheid: links MARI-Klier Procedure		
		 niet aangetroffen ja, gering / matig en geen bedreiging van het snijvlak ja, matig / massaal met mogelijk bedreiging van het snijvlak 		•	SWK verricht: nee Eerdere therapie: gee Aantal lymfklieren OK Aantal lymfklieren OK Aantal lymfklieren OK Debette methode OK	D: 5 D met macrometas	ase (> 0,2 mm en <= 2.0 mm): 1
	Aantal lymfklieren OKD met micrometastase > 0,2 mm en <= 2,0 mm	1			Trial-alert Indien patient stadium	III marnacarcinoor	n heeft (T0-2N2M0; T3N1-2M0; T4N0-
	Aantal lymfklieren niet-OKD				Bij een positieve test o worden met hoge dosi	of BRCAg mutatie of s chemotherapie g	aanmerking voor een BRCA1-like test. Irager kan hij in mogelijk behandeld evolgd door stamceltransplantatie of remmer. Voor informatie, neem zo
	Detectie methode OKD	cytokeratine IHC O PCR			spoedig mogelijk cont NCT02810743).	act op met subito@	nki.nl (zie ook clinicaltrials.gov
	Topklier Lokalisatie topklier	negatief positief niet gemarkeerd mediaal lateraal					
	Clustervorming lymfklieren	○ aanwezig ○ niet aanwezig					
		Indien patiënt stadium III mamacarcinoom heeft (T0-2N2M0, TXN3M0), komt hij waarschijnlijk in aanmerking voor een BRC positieve test of BRCAg mutate drager kan hij in mogelijk bel dosis chemotherapie gevolgd door stamoeitransplantate of of een PARP-remmer. Voor informatie, neem zo spoedig mogel subitogijniin I (zie ook clinicathials gov IkoT028510743) in I (zie ook clinicathials gov IkoT028510743)	CA1-like test. Bij een handeld worden met hoge hemotherapie gevolgd door	~			

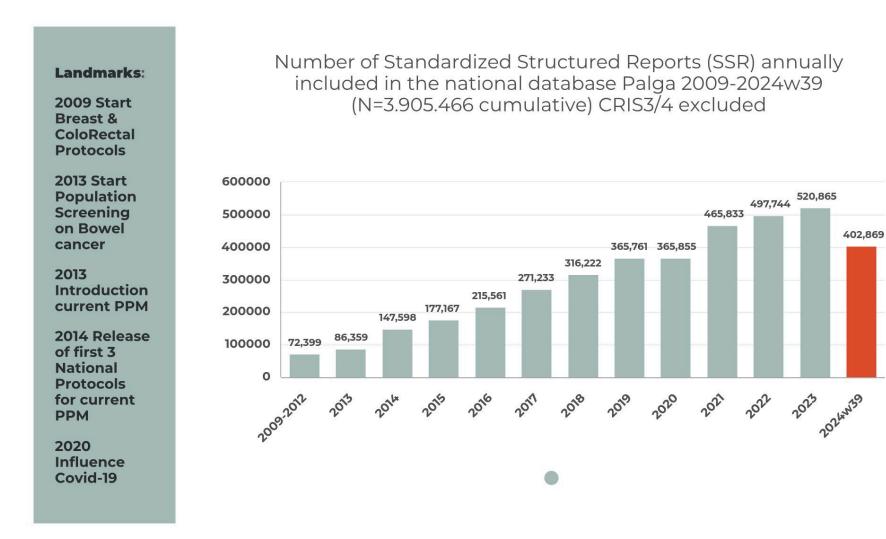
Breast trials:

Tailored Treatment in Older Patients TOP-1: Omission of radiotherapy in elderly patients with low-risk breast cancer

BOOG23:

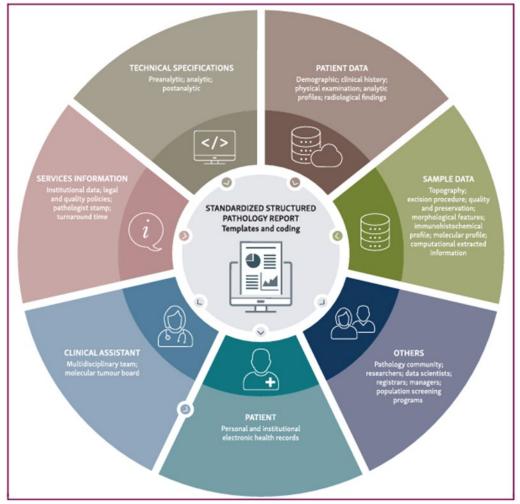

Omitting Sentinel Node Procedure in Breast **Cancer Patients Undergoing Breast Conserving Therapy**

Level 6 of pathology reporting Molecular Diagnostics (Palga, Netherlands) The layers of interoperability


		Controle Rapport Nummer	Patient Naam anoniem							Patient Nummer: anoniem Geslacht: Geboorte Datum: 19800101				Publicatie dat.	oleculaire bepaling
	Peden 220	vraag 🜔 therapiekeuze	clonaal verwantschap											Sequentie a	nalyse set 1
	Neden aan	o differentiaal diagnose		uers											
Gev	raagd onderzoek (cl verwants	cHPv2plus4 t.b.v. klonalite	its analyse 💙												
	Beschrijving aardmat														
	Referentienur	nmer PA-AA-202407-002TI													
F	Percentage neoplast	sellen 50% (gedeelte coupe)													
F	Percentage neoplast cellen beoordeeld	door V													
		ische 💿 voldoende 🔿 onvoldo	ende 🔾 onbekend												
		DNA voldoende onvoldo													
	Kwalitei	DNA goed O matig / voldo	ende 🔵 onvoldoende 💿 on	bekend											
Dat	asheet Seq analyse	panel 💙													
	Gebruikte teo	O NGS (no import)	HRM + Sanger O nanoString	 RT-PCR MLPA anders 											
	NGS pla														
	Info teksten platform	tonen 💿 ja 🔿 nee													
	Info teksten genen	tonen 🔵 ja													
	Info teksten genen aan Annuleren steer alles Deselect														
	aan Annuleren teer alles Deselect		Ref	Alt	Coverage	Frequency	Gene	Transcript	Exon	Coding		Protein Klasse	Toelichting	Geen pv	+
Selec	aan Annuleren teer alles Deselect	eer alles Chr Start	Ref	Alt	Coverage 1421	Frequency	Gene CDKN2A	Transcript NM_000077.5	Exon 2	Coding c.334C>T	p.Arg112Cys	Protein Klasse	Toelichting	Geen pv	+
Selec j/n	aan Annuleren tteer alles Deselect Build	chr Start 21971024									p.Arg112Cys p.Arg41Gin	Protein Klasse 3 3			
Selec j/n ☑	aan Annuleren steer alles Deselect Build hg19 9	Chr Start 21971024 153249458 17893881 17893881	G C C		1421	13.4 11.6 10.9	CDKN2A	NM_000077.5 NM_001349798.2 NM_005218.4	2 11 14	c.334C>T c.1322G>A c.2123C>T		Protein Klasse 3 3 3			/ 10 / 10 / 10
Selec j/n V V	Annuleren teter alles Deselet bg19 9 hg19 4 hg19 3 hg19 7	Chr Start 21971024 21971024 153249456 17893881 65259633 55259633	G C C C		1421 1259 1020 1991	13.4 11.8 10.9 6.7	CDKN2A FBXW7 PIK3CA EGFR	NM_000077.5 NM_001349798.2 NM_006218.4 NM_005228.5	2 11 14 21	c.334C>T c.1322G>A c.2123C>T c.2591C>T	p.Arg441Gin p.Ala708Val p.Ala884Val	3 3 3 3			/ W / W / W
j/n	Annuleren teter alles Deselet bg19 9 hg19 4 hg19 3 hg19 7	Chr Start 21971024 153249458 17893881 55259533	G C C		1421 1259 1020	13.4 11.6 10.9	CDKN2A FBXW7 PIK3CA	NM_000077.5 NM_001349798.2 NM_005218.4	2 11 14	c.334C>T c.1322G>A c.2123C>T	p.Arg441Gin p.Ala708Val	3 3 3			/ 10 / 10 / 10
Selec j/n 2 2 2 Pages	Annuleren tteeralles Deselect hg19 0 hg19 4 hg19 3 hg19 7 hg19 9	Chr Start 21971024 153249459 153249459 17893881 55259533 21970903 21 3 4 Next Last 3 of 4	G C C C		1421 1259 1020 1991	13.4 11.8 10.9 6.7	CDKN2A FBXW7 PIK3CA EGFR	NM_000077.5 NM_001349798.2 NM_006218.4 NM_005228.5	2 11 14 21	c.334C>T c.1322G>A c.2123C>T c.2591C>T	p.Arg441Gin p.Ala708Val p.Ala884Val	3 3 3 3			
jin 2 2 2 Pages	Annuleren teer alles Deselect Build 9 hg19 9 hg19 4 hg19 3 hg19 7 hg19 9 x Erst Prex 1 Genenoane tone h	Chr Start 21971024 153249459 153249459 17893881 55259533 21970903 21 3 4 Next Last 3 of 4	G C C C		1421 1259 1020 1991	13.4 11.8 10.9 6.7	CDKN2A FBXW7 PIK3CA EGFR	NM_000077.5 NM_001349798.2 NM_006218.4 NM_005228.5	2 11 14 21	c.334C>T c.1322G>A c.2123C>T c.2591C>T	p.Arg441Gin p.Ala708Val p.Ala884Val	3 3 3 3			2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
jin 2 2 2 Pages	Annuleren teer alles Deselect Build 9 hg19 9 hg19 4 hg19 3 hg19 7 hg19 9 x Erst Prex 1 Genenoane tone h	Chr Start 21971024 153249459 153249459 17893881 55259533 21970903 21 3 4 Next Last 3 of 4	G C C C		1421 1259 1020 1991	13.4 11.8 10.9 6.7	CDKN2A FBXW7 PIK3CA EGFR	NM_000077.5 NM_001349798.2 NM_006218.4 NM_005228.5	2 11 14 21	c.334C>T c.1322G>A c.2123C>T c.2591C>T	p.Arg441Gin p.Ala708Val p.Ala884Val	3 3 3 3			

Timeline implementation & development of SSR (Palga, Netherlands)

Timeline uptake of SSR (Palga, Netherlands) Timeline implementation & development of SSR

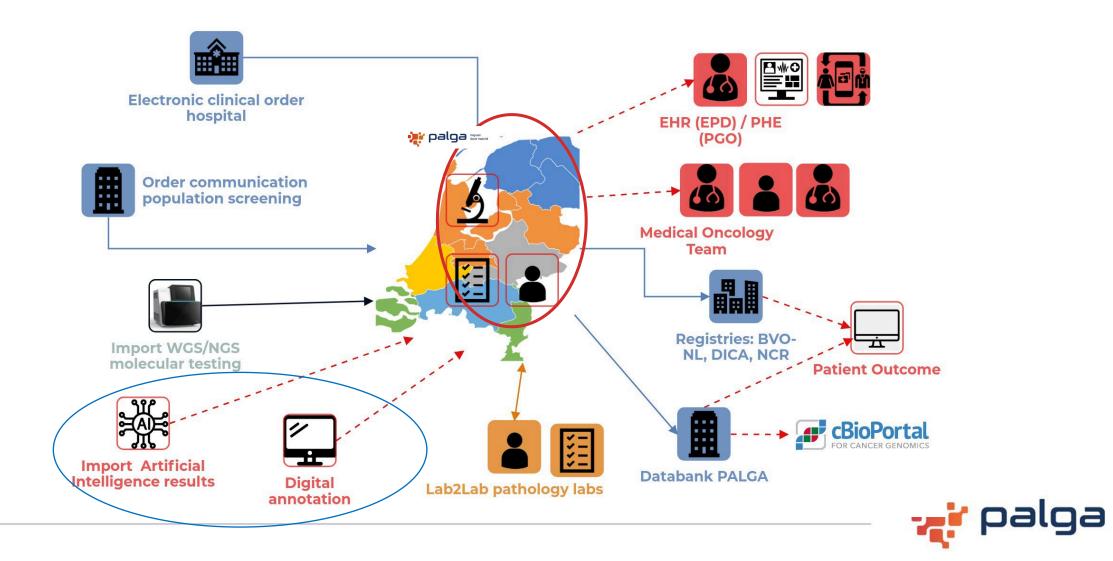

Implementation of SSR (Palga, Netherlands) *Timeline implementation & development of SSR*

Domain	Barriers	Facilitators
SSR	 Conclusion is same as microscopy, no added value anymore Pathologists argue that there is no room for nuance in the SSR* Use of SSR is not always useful/easy The format of the SSR-module is too strict Following the Dutch guidelines could lead to out of date reports The SSR-module is not user friendly Use is not compatible with current practice 	 It is clear why the SSR was implemented. The PALGA protocol modules ensures a uniform pathology report. Implementation of the SSR modules leads to discussion of definitions, more uniformity among pathologists
Professional (pathologist)	The uncertainty of the pathologists opinion disappears, which is undesirable for the clinicians *	 Pathologists feel that PALGA listens to them for input in the SSR-modules by the PALGA working group.
Social setting	 Communication among pathologists and within the multidisciplinary team does not increase due to more black and white conclusions and less explanation of conclusions* 	- Clinicians prefer SSR
Organizational factors	- SSR is not compatible with other hospital systems	
Incentives/resources and (inter)national guidelines		 SSR helps to collect structured data for multiple registration databases, such as the Netherlands Cancer Registry and th Dutch Institute for Clinical Auditing

🐙 palga

Summarizing "Standardized Structured Reporting" Timeline implementation & development of SSR

PERSPECTIVES


The 1 million words pathology report or the challenge of a reproducible and meaningful message

C. Eloy^{1,2*}, P. Seegers³, E. Bazyleva⁴ & F. Fraggetta⁵

³Pathology Laboratory, Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP), Porto; ³Pathology Department, Medical Faculty of University of Porto, Porto, Porto, Porto, Palga, National Pathology Databank, Houten, the Netherlands; ⁴Belgian Society of Pathology, Brussels, Belgium; ⁵Pathology Department, Gravina Hospital, Caltagirone, ASP Catania, Italy

Process flow SSR in the healthcare chain, Netherlands *Timeline implementation & development of SSR*

Artificial intelligence in healthcare (in medical reports) Future perspectives

Ethics and governance of artificial intelligence for health

Guidance on large multi-modal models

The principles should guide the development and deployment of AI in healthcare by a wide range of stakeholders, including governments, public sector agencies, researchers, companies and implementers.

The principles are: (1) protect autonomy; (2) promote human Well-being, human safety, and the public interest; (3) ensure transparency, "explainability," and intelligibility; (4) foster responsibility and accountability; (5) ensure inclusiveness and equity; and (6) promote AI that is responsive and sustainable

Table 1. Potential benefits and risks in various uses of LMMs in health care

Potential or proposed benefits	Potential risks
Assist in managing complex cases and review of routine diagnoses	Inaccurate, incomplete or false responses
Reduce the communication workload	Poor quality training data
of health-care providers ("keyboard	Bias (of training data and responses)
	Automation bias
various unstructured forms of health	Degradation of skills (of health-care professionals)
uata	Informed consent (of patients)
	Assist in managing complex cases and review of routine diagnoses Reduce the communication workload of health-care providers ("keyboard liberation") Provide novel insights and reports from

Artificial intelligence and SSR, revolutionizing diagnostic accuracy Future perspectives

Standardization SR/SSR:

- Minimal datasets ICCR templates
- On the European level, aline SNOMED CT terminology bindings

Implementing Molecular diagnostics:

• Create standardization on mutations

HDAB and EHDS:

- European data catalogue for MDR CE-IVD
- European standardization on quality label
- European standardization on meta-data

Name and Version of the AI Software:

• AI model used (e.g., "XYZ AI Algorithm Version 2.1", CE- number, EUDAMED number)

Purpose/Function of the AI Model:

- Intended use (e.g., cancer diagnosis, tumor classification)
- Explainability (as discussed in Florence)

Model Performance Metrics:

- Model performance metrics:
 - Accuracy: Percentage of correct predictions.
 - Sensitivity: Model's ability to correctly identify positive cases.
 - **Specificity**: Ability to correctly identify negative cases.
- notable performance benchmarks in research or clinical trials.

Type of Images Analyzed:

- Types of images processed by the AI (e.g., whole slide images, regions of interest).
- Detail the medical context (e.g., histopathological slides, microscopy images).

Image Acquisition Parameters:

- Acquisition process:
 - **Scanner model**: Name the scanner used (e.g., Leica Aperio, Philips IntelliSite).
 - **Magnification**: Highlight magnification levels used (e.g., 20x, 40x).

Tumor Type/Subtype Predictions:

• Predicts types and subtypes (e.g., adenocarcinoma, squamous cell carcinoma)

Grade/Stage Predictions:

• Al determines tumor grade and stage based on image analysis.

Risk Stratification Scores:

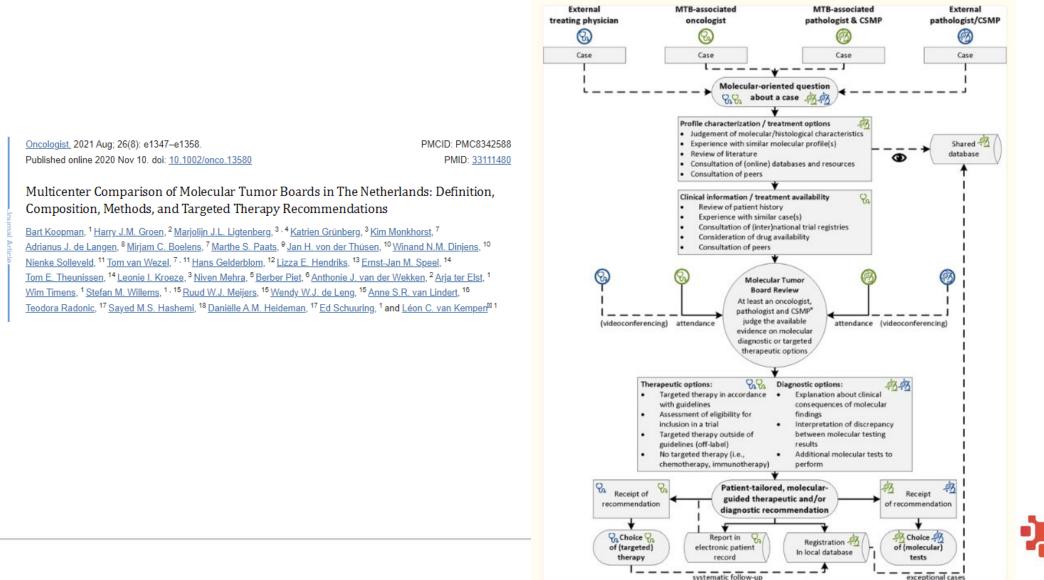
• Provides stratification into low, intermediate, or high-risk groups.

Known Limitations:

• Limited by image quality, rare tumor types, and sensitivity to artifacts.

Artifacts/Quality Issues:

• Poor-quality images (e.g., blur, stain variations) may affect AI performance.


Process flow SSR in the healthcare chain, Netherlands *Timeline implementation & development of SSR*

MOT/MTB with molecular diagnostics & patient outcome, cBioPortal

Future perspectives

systematic follow-up

MOT/MTB with molecular diagnostics & patient outcome, *cBioPortal Future perspectives*

	cBioPortal connectio												
Summary Clinical Data	1								Selected: 417 patien	ts 480 samp	ples 🔹	# ±	Custom Selection - Ch
c	ase Lists		Genomic Profile S	ample Counts		Tumor cell	percentages		Number of Samples Per Pa	tient	cfDNA Q	uality	Sample Received Da
Name		Freq *	Molecular Profile		Freq *		#	Freq *					
All samples	480	100.0%	Mutations	214	44.6%	voldoende	461	96.0%					
All samples with mutation da	ta 🗌 214	44.6%				III NA	16	3.3%			10 10		
						onbekend	2	0.4%	356				
						e onvoldoende	1	0.2%					
Search			Search			Search							
Mut	ation Count		Blood/Plasma Sample's Tu	mor Primary Locat	ion	DNA	Quality		Sex		Tissue Q	uality	
250-		1.1		4	Freq -		*	Freq -					
200-			III NA	□ 469	97.7%	beog 📕	229	47.7%					
150-			Iong	0 10	2.1%	III NA	125	26.0%	199 218		· ·		
100-			Colon	0 1	0.2%	onbekend	79	16.5%			455	5	
بر ان ان ان ا		4 24				matig / voldoende	33	6.9%					
		~ ~ ~	Search			Search							e la companya de la c
Tias	sue Source		Tissue Re	ason		Sequen	icing Type		Mutated G	enes (214 profile	nd samples)		
	*	Freq *		*	Freq *		*	Freq *	T Gene	# Mut	ø	Freq -	
	74	15.4%	therapiekeuze	347	72.3%	NGS	C 360	75.0%	TP53	94	090	42.1%	
Vymfklier		14.6%	differentiaal diagnose	77	16.0%	NGS (no import)	74	15.4%	KRAS	66			
	0 70		-								65	30.4%	
colon	0 61	12.7%	overig	34	7.1%	Sanger sequencing	15	3.1%	PIK3CA	33	33	30.4% = 15.4%	
colon long	61 29	12.7% 6.0%	overig clonaal verwantschap				0 11	3.1% 2.3%	BRAF	33 17	□ 33 □ 16		
colon long weke delen lever	0 61 29 26	12.7% 6.0% 5.4%	everig	34	7.1% 2.5%	Sanger sequencing Idylia	 11 11 	2.3% 2.3%	BRAF NRAS	33 17 12	33 16 12	15.4% 7.5% 5.6%	
colon long weke delen lever	61 29 26 21	12.7% 6.0% 5.4% 4.4%	overig clonaal verwantschap	- 34 - 12	7.1% 2.5%	Sanger sequencing Idyila NA Pyro-sequencing	0 11 0 11 0 5	2.3% 2.3% 1.0%	BRAF NRAS STK11	33 17 12 10	33 16 12 10	15.4% 7.5% 5.6% 4.7%	
colon long weke delen lever huid	61 29 26 21 21	12.7% 6.0% 5.4% 4.4%	overig cionaal verwantschap Search Sample Se	- 34 - 12 surce	7.1% 2.5% Freq *	Sanger sequencing Idylia	 11 11 	2.3% 2.3%	BRAF NRAS STK11 EGFR	33 17 12 10 10	33 16 12 10 9	15.4% 7.5% 5.6% 4.7% 4.2%	
colon long weke delen lever huid prostaat	- 61 29 26 21 21 19	12.7% 6.0% 5.4% 4.4%	everig clonaal verwantschap Search	34 12 surce # 238	7.1% 2.5% Freq * 49.6%	Sanger sequencing Idyila NA Pyro-sequencing	0 11 0 11 0 5	2.3% 2.3% 1.0%	BRAF NRAS STK11 EGFR PTEN	33 17 12 10	33 16 12 10 9 9	15.4% 7.5% 5.6% 4.7%	
colon long weke delen lever huld prostaat bot	29 26 21 21 19 16	12.7% 6.0% 5.4% 4.4% 4.4% 4.0% 3.3%	overig cionaal verwantschap Search Sample Se	34 12 surce # 238 104	7.1% 2.5% Freq * 49.6% 21.7%	Sanger sequencing Idyila NA Pyro-sequencing	0 11 0 11 0 5	2.3% 2.3% 1.0%	BRAF NRAS STK11 EGFR PTEN CTNNB1	33 17 12 10 10	33 16 12 10 9 9 9 8	15.4% 7.5% 5.5% 4.7% 4.2% 4.2% 3.7%	
colon long weke delen lever huld prostaat bot bloedplasma	- 61 29 26 21 21 19	12.7% 6.0% 5.4% 4.4% 4.4%	overig cionaal verwantschap Search Sample Se weefsel in paraffine FFPE	34 12 4 238 104 51	7.1% 2.5% Freq * 49.6%	Sanger sequencing Idyila NA Pyro-sequencing	0 11 0 11 0 5	2.3% 2.3% 1.0%	BRAF NRAS STK11 EGFR PTEN	33 17 12 10 10 9	33 16 12 10 9 9	15.4% 7.5% 5.6% 4.7% 4.2%	
colon long weke delen lever huld prostaat bot bloedplasma hersenen beenmerg	29 26 21 21 19 16	12.7% 6.0% 5.4% 4.4% 4.4% 4.0% 3.3%	overig cionaal verwantschap Search Sample Se weefsel in paraffine FFPE blanco coupes	a 34 12 12 238 238 104 51 20	7.1% 2.5% Freq * 49.6% 21.7%	Sanger sequencing Idylla NA Pyro-sequencing ddPCR	0 11 0 11 0 5	2.3% 2.3% 1.0%	BRAF NRAS STK11 EGFR PTEN CTNNB1 CDKN2A SMAD4	33 17 12 10 10 9	33 16 12 10 9 9 9 8	15.4% 7.5% 5.5% 4.7% 4.2% 4.2% 3.7%	
lymfiklier colon long weke delen lever huld prostaat bot bloedplasma hersenen beenmerg Search	61 29 26 21 21 19 16	12.7% 6.0% 5.4% 4.4% 4.4% 4.0% 3.3% 3.3%	overig cionaal verwantschap Search Sample Search weefsel in paraffine FFPE blanco coupes HE coupe[blanco coupes		7.1% 2.5% Freq * 49.6% 21.7% 10.6%	Sanger sequencing Idyila NA Pyro-sequencing	0 11 0 11 0 5	2.3% 2.3% 1.0%	BRAF NRAS STK11 EGFR PTEN CTNNB1 CDKN2A	33 17 12 10 10 9	33 16 12 10 9 9 9 8 8 6	15.4% 7.5% 5.6% 4.7% 4.2% 4.2% 3.7% 2.8%	
colon long weke delen lever huid prostaat bot bloedplasma hersenen beenmerg Search	61 29 26 21 21 19 16	12.7% 6.0% 5.4% 4.4% 4.4% 4.0% 3.3% 3.3%	overig cionaal verwantschap Search Sample Search weefsel in paraffine FFPE blanco coupes HE coupe/blanco coupes cytologie preparaat	a 34 12 12 238 238 104 51 20	7.1% 2.5% Freq * 49.6% 21.7% 10.6% 4.2%	Sanger sequencing Idylla NA Pyro-sequencing ddPCR	0 11 0 11 0 5	2.3% 2.3% 1.0%	BRAF NRAS STK11 EGFR PTEN CTNNB1 CDKN2A SMAD4	33 17 12 10 10 9	33 16 12 10 9 9 9 8 8 6	15.4% 7.5% 5.6% 4.7% 4.2% 4.2% 3.7% 2.8%	
colon long weke delen lever huid prostaat bot bloedplasma hersenen beenmerg Search	61 29 26 21 21 19 16 16 16	12.7% 6.0% 5.4% 4.4% 4.4% 4.0% 3.3% 3.3%	overig cionaal verwantschap Search Sample Search weefsel in paraffine FFPE blanco coupes HE coupelblanco coupes cytologie preparaat cfDNA		7.1% 2.5% Freq * 49.6% 21.7% 10.6% 4.2% 3.3%	Sanger sequencing Idylla NA Pyro-sequencing ddPCR	0 11 0 11 0 5	2.3% 2.3% 1.0%	BRAF NRAS STK11 EGFR PTEN CTNNB1 CDKN2A SMAD4	33 17 12 10 10 9	33 16 12 10 9 9 9 8 8 6	15.4% 7.5% 5.6% 4.7% 4.2% 4.2% 3.7% 2.8%	
colon long weke delen lever huid prostaat bot bloedplasma hersenen beenmerg Search	Color Version	12.7% 6.0% 5.4% 4.4% 4.0% 3.3% 3.3% 2.7%	overig cionaal verwantschap Search Sample Sr weefsel in paraffine FFPE blanco coupes HE coupelblanco coupes cytologie preparaat crDNA HE coupe		7.1% 2.5% Freq * 49.6% 21.7% 10.6% 4.2% 3.3% 2.7%	Sanger sequencing Idylla NA Pyro-sequencing ddPCR	0 11 0 11 0 5	2.3% 2.3% 1.0%	BRAF NRAS STK11 EGFR PTEN CTNNB1 CDKN2A SMAD4	33 17 12 10 10 9	33 16 12 10 9 9 9 8 8 6	15.4% 7.5% 5.6% 4.7% 4.2% 4.2% 3.7% 2.8%	
colon long weke delen lever huid prostaat bot bloedplasma hersenen beenmerg Search Prote	- 61 29 26 21 19 16 16 16 13 scol Version #	12.7% 6.0% 5.4% 4.4% 4.0% 3.3% 3.3% 2.7%	overig cionaal verwantschap Search Search weefsel in paraffine FFPE blanco coupes HE coupe blanco coupes cytologie preparaat crDNA HE coupe cytologie paraffineblokje		7.1% 2.5% 49.6% 21.7% 10.6% 4.2% 3.3% 2.7% 2.3%	Sanger sequencing Idylla NA Pyro-sequencing ddPCR	0 11 0 11 0 5	2.3% 2.3% 1.0%	BRAF NRAS STK11 EGFR PTEN CTNNB1 CDKN2A SMAD4	33 17 12 10 10 9	33 16 12 10 9 9 9 8 8 6	15.4% 7.5% 5.6% 4.7% 4.2% 4.2% 3.7% 2.8%	
colon long weke delen lever huid prostaat bot bloedplasma hersenen beenmerg Search		12.7% 6.0% 5.4% 4.4% 4.4% 3.3% 3.3% 2.7% Freq * 96.3%	overig cionaal verwantschap Search Sample Sc weefsel in paraffine FFPE blanco coupes HE coupe blanco coupes cytologie preparaat crDNA HE coupe cytologie paraffineblokje DNA		7.1% 2.5% 49.6% 21.7% 10.6% 4.2% 3.3% 2.7% 2.3% 1.9%	Sanger sequencing Idylla NA Pyro-sequencing ddPCR	0 11 0 11 0 5	2.3% 2.3% 1.0%	BRAF NRAS STK11 EGFR PTEN CTNNB1 CDKN2A SMAD4	33 17 12 10 10 9	33 16 12 10 9 9 9 8 8 6	15.4% 7.5% 5.6% 4.7% 4.2% 4.2% 3.7% 2.8%	

MOT/MTB with molecular diagnostics & patient outcome, *cBioPortal Future perspectives*

			lar Database (itients / 480 samp			genes 🥒								Querier	d genes are altered ir	n • 132 (32%) of queried p • 135 (28%) of queried p	
ncoPrint Cancer	Types S	Summary	Mutual Exclu	sivity Pk	ots Muta	ions Compa	rison Pathy	vays Dow	mload								
dd Tracks + Sort +	Mut	ations +	View + Dow	nload - G	-	■ 45 % Q	Ħ										
mples per P		muldan		mandanan	ահետուս			սհանատեստ					lloomaadaaa				
ue Source	-al																
ple Source	-H-																
NA Quality		11															
od/Plasma Sa		H															
ation Count				a ahth		. Bumalı			diam	. IIIIshhur as	huttontatettandelt	111		the true	the set buch dates		
tion spectrum			11111		111		h h				PIII 1 11				I P III		
S	31%*				•										1		
1	42%*			• • ••			•••••								1	·	
F	8%*				- -						*			+		- - - -	•
		10. 111	11 10 1 101 1 00					-11-11-1-1-	-1000-0-0-0								
R	4%*		110 110110		1131.10.13	1 Monthline		2401 10123.01									
rtic Alteration			Itation (putative dri	rer) 🖣 Misse	nse Mutation (p	utative driver) 🚦	dissense Mutation	(unknown signifi	icance) 🛉 Splice	Mutation (putative driv	ver) 📲 Truncating Mutati	ion (putative drive	er) 📗 No altera	tions – Not profile	ed	110113001110	
R etic Alteration mples per Patient ue Source		Inframe Mu	bijnier bi	aas bloed mamma	bloedplas	na b ioedvat	bot bronch	us cervix	colon end	ometrium 🚦 glasvoc		huid huid	neoplasie hy	pofyse kaak	lichaam	9	
etic Alteration mples per Patient		Inframe Mu Joan 3 beenmerg Jong 1 ureter anders	bijnier bi ymfklier maag uterus weke blanco coupes	aas bloed mamma delen ctDNA	bloedplass Mixed	na bloedvat neusbijholte d	bot bronch mentum ovar je paraffinebickje	us cervix lum pancrei	colon ende as pericardvor araffineblokjejblance	ometrium glasvoc cht peritoneum o coupes cytologi	ver) 🖡 Truncating Mutati cht oog 📗 hersenen	huid huid t prostaat	neoplasie hy rectum	rpofyse kaak schildklier slokd	lever lichaam darm spier tore	9	
etic Alteration mples per Patient ue Source		Inframe Mu Inframe Mu Infram	bijnier bi ymfklier maag uterus weke blanco coupes	aas bloed mamma delen ctDNA coupes ir	bloedplass Mixed	na bioedvat neusbijholte d serveer cytolo	bot bronch mentum ovar je paraffinebickje	us cervix lum pancrei	colon ende as pericardvor araffineblokjejblance	ometrium glasvoc cht peritoneum o coupes cytologi	ver) Truncating Mutati cht oog hersenen pleura pleuravoch	huid huid t prostaat	neoplasie hy rectum	rpofyse kaak schildklier slokd	lever lichaam darm spier tore	9	
rtic Alteration mples per Patient ue Source ple Source		Inframe Mu Inframe Mu Infram	bijnier bi ymfklier maag uterus weke blanco coupes routine (gekleurde) matig / voldoende	aas bloed mamma delen ctDNA coupes ir	bloedplass Mixed	na bioedvat neusbijholte d serveer cytolo	bot bronch mentum ovar je paraffinebickje	us cervix lum pancrei	colon ende as pericardvor araffineblokjejblance	ometrium glasvoc cht peritoneum o coupes cytologi	ver) Truncating Mutati cht oog hersenen pleura pleuravoch	huid huid t prostaat	neoplasie hy rectum	rpofyse kaak schildklier slokd	lever lichaam darm spier tore	9	
etic Alteration mples per Patient ue Source ple Source IA Quality d'Plasma Sample's Tun		Inframe Mi Inframe Mi Infram	bijnier bi ymfklier maag uterus weke blanco coupes routine (gekleurde) matig / voldoende	aas bloed mamma delen ctDNA coupes ir	bloedplass Mixed	na bioedvat neusbijholte d serveer cytolo	bot bronch mentum ovar je paraffinebickje	us cervix lum pancrei	colon ende as pericardvor araffineblokjejblance	ometrium glasvoc cht peritoneum o coupes cytologi	ver) Truncating Mutati cht oog hersenen pleura pleuravoch	huid huid t prostaat	neoplasie hy rectum	rpofyse kaak schildklier slokd	lever lichaam darm spier tore	9	

MOT/MTB with molecular diagnostics & patient outcome *Future perspectives*

> Cancers (Basel). 2021 Jul 20;13(14):3641. doi: 10.3390/cancers13143641.

A Nationwide Study on the Impact of Routine Testing for *EGFR* Mutations in Advanced NSCLC Reveals Distinct Survival Patterns Based on *EGFR* Mutation Subclasses

Bart Koopman ¹, Betzabel N Cajiao Garcia ¹, Chantal C H J Kuijpers ², Ronald A M Damhuis ³, Anthonie J van der Wekken ⁴, Harry J M Groen ⁴, Ed Schuuring ¹, Stefan M Willems ¹, Léon C van Kempen ¹

Affiliations + expand PMID: 34298851 PMCID: PMC8307492 DOI: 10.3390/cancers13143641

> Diagnostics (Basel). 2022 Mar 9;12(3):668. doi: 10.3390/diagnostics12030668.

Detection of *NTRK* Fusions and TRK Expression and Performance of pan-TRK Immunohistochemistry in Routine Diagnostics: Results from a Nationwide Community-Based Cohort

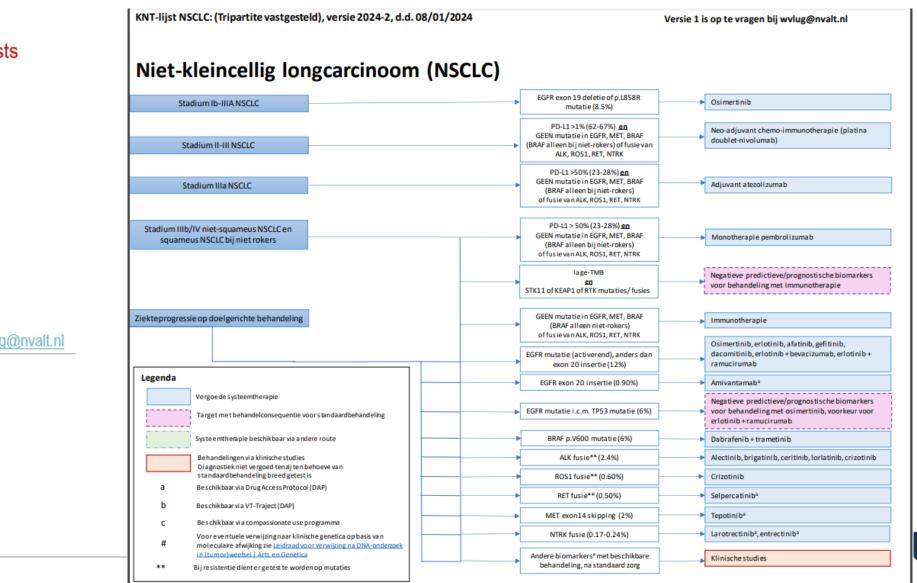
Bart Koopman ¹, Chantal C H J Kuijpers ², Harry J M Groen ³, Wim Timens ¹, Ed Schuuring ¹, Stefan M Willems ¹, Léon C van Kempen ¹

Affiliations + expand PMID: 35328221 PMCID: PMC8946871 DOI: 10.3390/diagnostics12030668

MOT/MTB with molecular diagnostics & patient outcome *Future perspectives*

Quality Standards, in the Netherlands

Organization of molecular pathology diagnostics in oncology

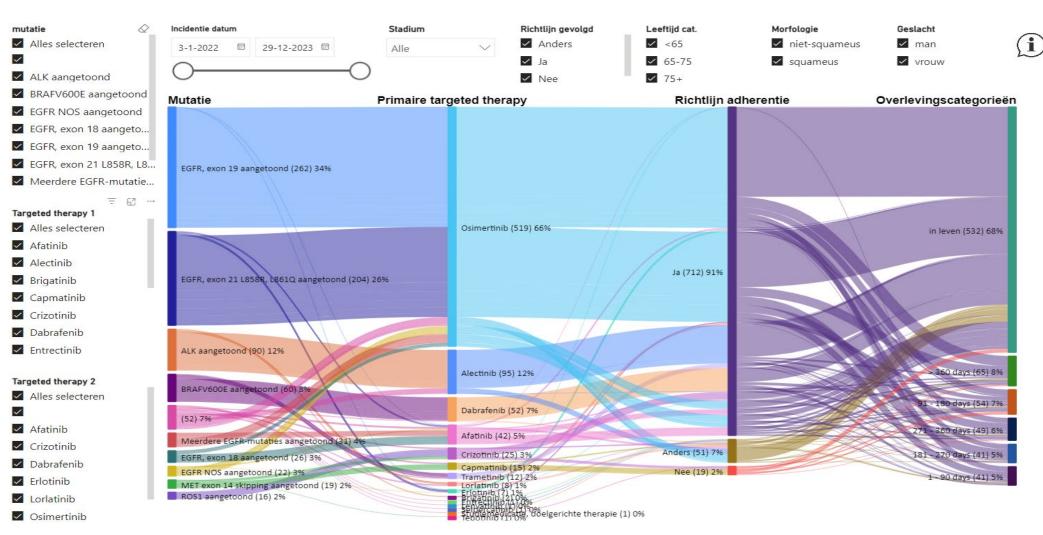

MOT/MTB with molecular diagnostics & patient outcome

Future perspectives

(€) (A) > PMD NSCLC > Primaire behandeling (obv KNT-lijst) Start care path TNM stage (UICC) adian IID, N Squameu Morphology Anders ECHR-1153 IOS1 fusio ALK 1JSH Ceen Extin20 Alectin Friorinitr EN EN FN OF. or Central recommendations 0 Lonietinit or

This is a screenshot of the Oncoguide application showing a decision algorithm for choosing a primary treatment for patients with stage IV non-small cell lung cancer based on the Clinical Necessary Target list

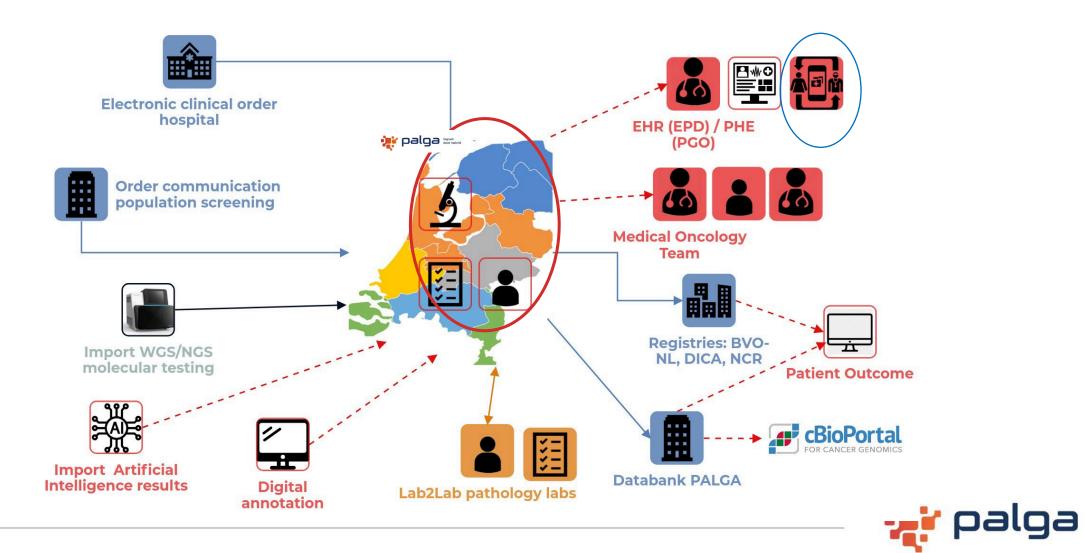
MOT/MTB with molecular diagnostics & patient outcome *Future perspectives*



Clinical Necessary Target Lists

- > Cervix carcinoma
- > Cholangial carcinoma
- > Colorectal carcinoma
- > Endometrium carcinoma
- > GIST
- > HNSCC
- > Gastric carcinoma
- > Breast cancer
- > Melanoma
- > Renal cell carcinoma
- > NSCLC
- KNT List NSCLC v2 2024-01-08 Version 1 can be requested from wvlug@nvalt.nl
- > Esophageal carcinoma
- > Ovarian carcinoma
- > Pancreas carcinoma
- > Prostate carcinoma
- > Thyroid carcinoma
- >Salivary gland carcinoma
- > Urothelial Cell Carcinoma

Voor referenties en extra informatie zie het begeleidend document van de lijsten Klinisch Noodzakelijke Targets (KNT). De meest recente versie is te vinden op <u>https://www.nvalt.nl/vereniging/belangrijke-documenten</u>


MOT/MTB with molecular diagnostics & patient outcome *Future perspectives*

💓 palga

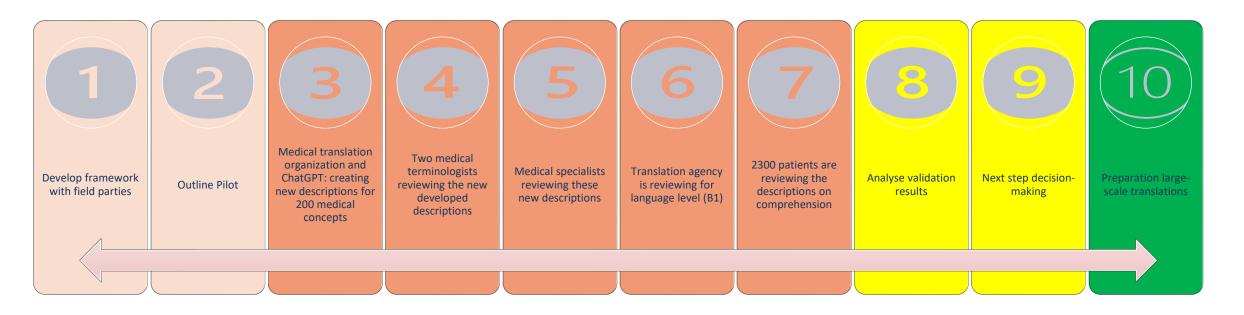
Process flow SSR in the healthcare chain, Netherlands

Timeline implementation & development of SSR

Pilot study patient-friendly terms

Why needed Personal Health Environment (PHE)

- Patients have more access to their data (EHDS)
- Patients are getting more control over their data
 - What to share or not
- The Netherlands has more than 1,2 million low-literate people
- Plain text with cancer in the report has an impact on a patient
- Nictiz is setting up a project to make the content of a medical report more understandable for patients



- Nictiz is adding patient-friendly terms and descriptions to the medical concepts in SNOMED International
- In the Pilot, we will combine Palga national protocol ColonBiopsy-TEM with patient-friendly terms and descriptions

Pilot study patient-friendly terms Personal Health Environment (PHE)

Pilot study patient-friendly terms

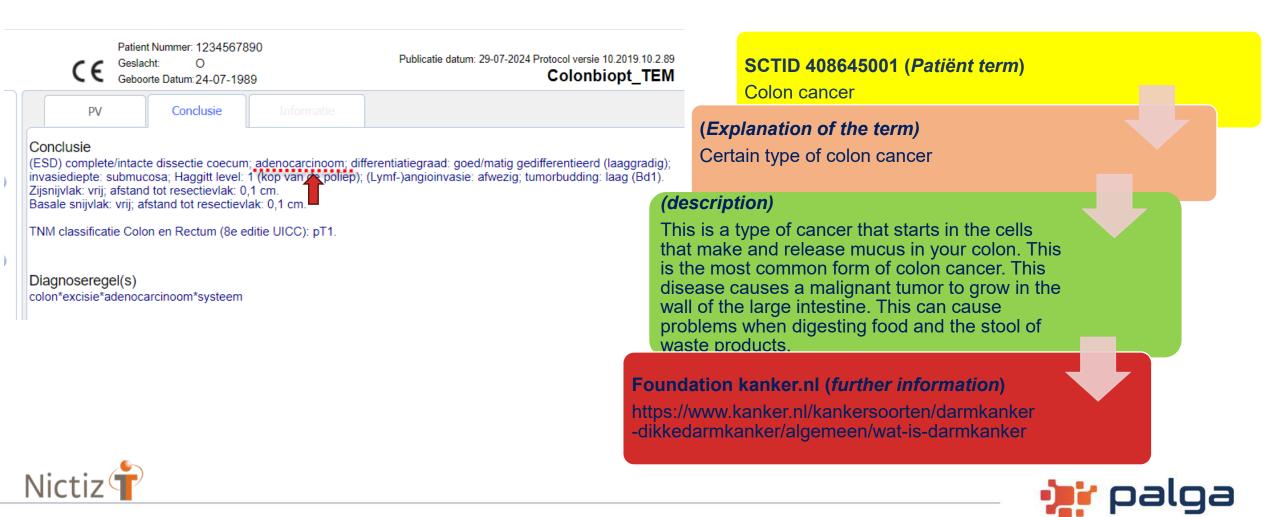
Personal Health Environment (PHE)

Explanation of SCTID Medical preferred term Patiënt term **Rating term** Descriptions **Rating description Explanation assessment** term This is a type of cancer. It begins in cells that form This is a type of cancer that starts in the glands, the parts of your glands. These glands make mucus, digestive juices and 1187332001 body that make mucus, such as in your lungs, intestines or breasts. Otherwise, namely Otherwise, other fluids in different parts of your body such as (morphologic adenocarcinoma Klierkanker A form of cancer This is the most common type of cancer. It usually grows very lungs, chest, intestines, stomach, pancreas and namely ... slowly. If someone has adenocarcinoma, it is important to act abnormality) prostate. Not all growths in these glands are quickly because it can spread to other parts of the body. adenocarcinoma, only the malignant ones are so called. This is a type of cancer that starts in the cells that make and release Sufficient with mucus in your colon. This is the most common form of colon minimal Certain type of 408645001 cancer. This disease causes a malignant tumor to grow in the wall of Correct / sufficient adenocarcinoma of colon Colon cancer changes, namely colon cancer the large intestine. This can cause problems when digesting food and the stool of waste products. 408645001 adenocarcinoma of colon This is a type of cancer in the colon. The cancer develops in the This is a type of cancer that starts in the cells that make glandular cells. These are the cells that make mucus, bodily fluids and release mucus in your colon. This is the most and hormones. Otherwise. Certain type of common form of colon cancer. This disease causes a Otherwise, namely namely ... colon cancer malignant tumor to grow in the wall of the large intestine. This can cause problems when digesting food Medical and the stool of waste products. translation This is a small, usually benign tumor (polyp). They can This is a small, usually non-malignant growth of tissue. They can organization Sufficient with occur in multiple places in your body but are most occur in multiple places in your body, but they are most common in Sufficient with minimal common in the nose, intestines, or uterus. A polyp can and ChatGPT: 41329004 polyp Polyp the nose, intestines or uterus. A polyp can be in the form of a minimal changes. Tumour changes, namely be in the form of a nodule, bump, or peduncle. It can creating new nodule, bump or peduncle. It can sometimes cause problems namely ... sometimes cause problems depending on the size and depending on the size and location. descriptions for location. This is a type of cancer. It begins in cells that form 200 medical This is a type of cancer. It starts in cells that make glands. These Sufficient with glands. These glands make mucus, digestive juices and concepts glands make mucus, digestive juices and other fluids in different Sufficient with 443961001 minimal other fluids in different parts of your body such as adenocarcinoma Klierkanker A form of cancer parts of your body such as lungs, chest, intestines, stomach, minimal changes, changes, namely (disorder) lungs, chest, intestines, stomach, pancreas and pancreas and prostate. Not all growths in these glands are namely ... prostate. Not all growths in these glands are adenocarcinoma, only the malignant ones are so called. adenocarcinoma, only the malignant ones are so called. adenocarcinoma klierkanker This is a type of cancer. The tumor arises in the glandular cells. This is a type of cancer. It begins in cells that form Sufficient with These are the cells in the body that make mucus, bodily fluids and glands. These glands make mucus, digestive juices and 443961001 hormones. other fluids in different parts of your body such as minimal Otherwise, namely A form of cancer (disorder) changes, namely lungs, chest, intestines, stomach, pancreas and ... prostate. Not all growths in these glands are adenocarcinoma, only the malignant ones are so called. A polyp is a tumor on the mucous membrane. Polyps are mainly This is a small benign tumor (polyp). They can occur in 41329004 polyp found in the intestines. They can be large or small. They are usually multiple places in your body, but they are most Nictiz **1** common in the nose, intestines or uterus. A polyp can Otherwise. not dangerous. Otherwise, namely Polyp namely ... be in the form of a nodule, bump or peduncle. It can sometimes cause problems depending on the size and

location.

Pilot study patient-friendly terms Personal Health Environment (PHE)

2300 patients are reviewing the descriptions on comprehension



Patients were asked to rate the **mixed assessment** on a scale of 1 to 4.

Mixed assessment of AI by level of education	
Primary education	3,45
Secondary education	3,68
Secondair vocational education	3,70
Higher vocational education	3,67
University	3,62
Translation Agency mixed assessment by level of education	
Primary education	3,44
Secondary education	3,66
Secondair vocational education	3,65
Higher vocational education	3,66
University	3,62

Pilot study patient-friendly terms Personal Health Environment (PHE)

Take home messages

Standardized Structured Reporting (SSR) is becoming more and more important for primary and secondary use and must include:

Baseline

- International minimal datasets (CAP, ICCR, RCPath, RCPA)
- Cancer staging TNM (AJCC, UICC)
- International coding systems (SNOMED-CT, LOINC, ICD-O)
- Standardization in data exchange (HL7-CDA, FHIR, openEHR)

Challenging

- Standardization on non-core elements (concensus articles, guidelines etc.)
- Standardization on functional diseases (concensus articles, guidelines etc.)
- Standardization on molecular diagnostics (ESP, EEIC, AMP, etc.)
- Standardization on artificial intelligence and digital annotations (DPA, ESDP, ASDP, JSDP, vendors, etc.)
- Quality labels and metadata (HDAB, EHDS) (EU only)

Thank you for your attention

For more information: Paul Seegers, paul.seegers@palga.nl

Infographics: Alexander Ahmedov, <u>sashaahmedov@gmail.com</u>

© Copyright, Palga Foundation

